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Abstract 

16 Estimating growth (increase in  size  with age) is an integral component of fish population 

assessment. The use of integrated assessment models combined with the influence of misfitting  

size composition data on results have led to renewed interest in how  growth is modeled in the  

assessment process. The  types of data available to describe the  growth process control how the  

length-at-age relationship will be estimated. Many  factors contribute to the complexity of  

estimating length-at-age, including multiple sources of biological variability and difficulties in  

getting representative samples. The growth process in the population dynamics model is linked 

to all other processes and data but most directly influences the  assessment  model through 1)  

converting numbers into weight  and vice versa, 2) productivity, and 3) modifying fits of size  

composition data. In some cases, an assessment may be insensitive to moderate levels of  

misspecification of the  growth process, and therefore, relatively simple treatments may be  

adequate. However,  in  many cases, especially those where the fit of size composition is  

influential in estimating scale, a more thorough treatment of the  growth process is needed. A  

complete treatment of  growth will estimate the most important forms of biological variability,  

including individual, sex-specific, temporal, and spatial variability. Several types of sampling  

bias, including selectivity, length-stratified sampling, and spatial and measurement error, will 

likely also need to  be addressed. When sufficient data are available, assessment authors should 

consider estimating the  growth process  as part of the integrated assessment  model or consider  

empirical approaches  for  situations with high biological variability  and sampling bias.  
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37 1.  Introduction  

38 The field popularly known as ‘age  and growth’ has often served as the  gateway for  

biologists into the broader arena of population assessment. Understanding fish growth patterns  

plays a key role in more than just the applied fields. Growth patterns have  been used to assert  

evolutionary processes (Roff, 1984; 1993; 2000; Hendry et al., 2000; Haugen and Vøllestad, 

2001), to infer less easily observed life history traits (Pauly, 1980; Griffiths and Harrod, 2007),  

connectivity between areas (Helser, 1996; Swain and Foote, 1999), and movement (McDaniel et  

al., 2016). However, it could be argued that  growth studies play one of their most crucial roles in 

the population assessment of exploited stocks.  

The increasing use of integrated assessment models (i.e., those that combine several  

sources of data into a single model)  combined with the influence on assessment results from  

misfitting size composition data (Francis, 2016) has led to renewed interest in the applied 

understanding of fish growth. It was once presumed that because  growth models are simple and 

data can be readily  gathered, the estimation of this biological process is relatively uncomplicated. 

However, this assumption has proven to be  far  from reality  as the difficulties faced in collecting  

representative growth data are the same as for any  data sources used in stock assessments.  

Despite the importance of age and growth research, there has been surprisingly little change in 

the applied approaches used in assessments to depict growth. The von Bertalanffy Growth  

function (VBGF;  Beverton and Holt, 1957; von Bertalanffy, 1957) remains (by  far) the most  

commonly used growth model (Flinn and Midway, 2021). Relatively little attention has been 

paid by stock assessors to the many sources of variability in growth (Lorenzen, 2016). A  

workshop (Maunder et al., 2016) aimed at providing g uidelines for treating the length-at-age 
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59 relationship in age-structured models (Francis, 2016) outlines many of the  issues, but no clear  

consensus could be developed for using g rowth modeling in applied population assessments.  

 In this paper, we attempt to expand upon the conceptual framework of  Francis (2016)  

and summarize the current level of understanding of  fish growth. Additionally, we will provide  

some advice to assessment scientists about the process of fish growth, explicitly covering how  

the estimates of  size-at-age  affect integrated population dynamics modeling and methods of its  

estimation. We focus on length-at-age as it relates to integrated age-structured population models  

because of their widespread use and because length-at-age is especially important in fitting size  

composition data. However, many of the same considerations could apply  to other types of  

assessment models and other forms of fish growth (e.g., length-weight).   
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69 2.  Biology  

70 The terms "growth" and "size-at-age" are often used interchangeably. H owever, for the  

sake of simplicity in the  remainder  of this paper, we will define  "growth" as  the action of  

changing length over time, "length-at-age" as an expression of that action, and the "growth 

process" as the mathematical relationship between length and  age.  

2.1. Theoretical model  

The biological model underpinning gr owth generally assumes that nutrients are  

metabolized over time, making  growth age-dependent. Fish are somewhat unique among  

vertebrates in that growth can be indeterminate in maximum  length (Talbot, 1993) and quite  

variable (Lorenzen, 2016). Variability arises because local factors that affect nutrient availability,  

metabolism, or anabolism will ultimately affect the local expression of length-at-age.   
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2.1.1. Nutrient availability   

 Nutrient availability  affects growth and maximum fish size (Yoneda and Wright, 2005; 

Auer et al., 2015; Kuzuhara et  al., 2019), influenced by both biotic and abiotic factors (Eker-

Develi et al., 2022). Ecological processes  like hypoxia (Eby et al., 2005; Campbell and Rice, 

2014)  impact actual nutrients available to a fish, and density-dependent competition  affects  

growth  in both juvenile (Lorenzen and Enberg, 2002) and adult stages (van Gemert and  

Andersen, 2018).  

2.1.2. Metabolism  

 Abiotic factors, such as temperature, have been shown to influence individual  

metabolism (Campana et al., 1995; Gillooly  et al., 2001).  It is widely  agreed that metabolism and  

growth peak within an optimal temperature range and decline as temperature departs from that  

range (Little and Seebacher, 2021). However, the effects of temperature on growth can be 

complex, as increased  growth rates may cause early maturation, which may  ultimately decrease 

the maximum length-at-age (Daufresne et al., 2009). Salinity  (Bœuf and Payan, 2001), pH (Mota 

et al., 2018), and oxygen intake (Pauly, 2021)  also affect metabolism (Bœuf and Payan, 

2001; Mota et al., 2018).  

2.1.3. Anabolism  

The process of synthesizing new tissue in fish is complex, variable, and influenced by  

multiple factors that interact with each other. Age  is  often the primary factor affecting the growth  

rate in fish (Denechaud et al., 2020). Maturation, which may also be influenced by age, often has  

a negative impact on somatic growth (Roff, 1983;  2000) as more metabolized nutrients are  
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101 allocated to reproduction (Minte-Vera et al., 2016). However, these effects  can vary  among  

individuals and are influenced by environmental factors (van Poorten and Walters, 2016).  

2.2. Does understanding biology even matter?  

The complexity  and interactions of factors that simultaneously influence nutrient  

availability and metabolism make a mechanistic understanding of the drivers of  growth and its  

variability difficult and beyond the scope of the typical stock assessment. Consequently, it is  

reasonable to ask if a mechanistic understanding of the growth process is necessary (van Poorten 

and Walters, 2016). Most population assessment work is descriptive, involving recreating the  

past population abundances. The role of fishing in determining those dynamics may not require  a  

mechanistic understanding of  growth drivers. In some cases, a reasonably accurate description of  

length-at-age may suffice.  However, in cases  where fine-scale estimates of  growth are important 

and observations of length-at-age are incomplete or where we need to forecast beyond the 

observation period, a mechanistic understanding m ay improve predictions. This is particularly  

evident in long-term projections, where length-at-age may be  related to potential environmental  

changes (Lee  et al., 2018; Denechaud et al., 2020). However, a high bar should be placed on 

such studies for informing management, as the mechanistic growth drivers are likely more  

complicated than  generally acknowledged. Therefore, the key question for  applied work is what  

constitutes a "reasonably  accurate" representation of length-at-age for the questions being asked 

and how we can achieve it.  
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3.  Data  

121 Before discussing how to or what is an accurate estimate of length-at-age, the most basic  

consideration governing the growth process estimation is what data is available. Although when 

estimated inside the population dynamics model, information on the process may come from  

indirect sources  (Sippel et al., 2017), for this paper there are several  categories of direct sources.  

These direct sources  generally consist of size measurements and associated measures of time.  

Time can be either an  age or an increment of time.  In most instances  where an age is associated  

with a length, that  age is  derived from  counting a nd va lidating daily or  annual rings  from hard 

parts such as otoliths, fin rays, spines, or vertebrae, although other products  of metabolism have  

also been used (Kilada and Driscoll, 2017). Increments of time are typically  derived from  capture  

and recapture events without necessarily knowing the age. The  following is a brief discussion of  

the most common types  of data used in routine stock assessment.  

3.1. Length composition (length modes)  

Length composition,  though not   directly  associated with  age or time increment, can  

reveal  cohort  information through modal structures  (Leigh and Hearn, 2000), w hich suggests  

time as a relative age. M ore complicated methods have been developed to decompose less  

obvious structures (usually larger sizes) into age  groups (Pauly, 1987; Fournier et al., 1990;  

Laslett et al., 2004). Seasonal modal  changes  can  offer insight into cohort  growth rates.  

3.2. Paired age-length observations   

The most commonly used  data to estimate the length-at-age relation are paired  

observations of length and age. Francis  (2016) described two ways these paired observations  
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141 could be treated, which relate to whether length or age can be considered representative of  a  

given value of the other. The more traditional use  of paired age-length data  assumes that lengths  

are representative of  a given age (random-at-age). Alternatively, the same type of data can be 

used with an estimation procedure that assumes that the ages are representative of a length  

(random-at-length). Random-at-length data is also  sometimes referred to as  conditional age-at-

length.  

 3.3. Mean length at age  

A variation of the paired length and age data is observations of mean length at age. This  

type of data is similar to random-at-age data, but it has the drawback that the growth pattern is  

summarized, and information on the individual variability is missing. The  use of mean length-at-

age is often because the information is taken from  a report, and the individual data is not  

available. Alternatively,  mean length-at-age could be used when the analyst does not want a  

large number of samples  from small or intermediate-aged fish to have too much influence  and 

wants to give  equal weight to each age.  

3.4. Tagging  

Tagging offers  direct  growth  observations (Francis, 1988; Hearn and Polacheck, 2003;  

Francis et al., 2016), through measurements taken  between  capture and recapture increments of  

time. However, tagging  can be costly, suffer from sparse  recaptures across regions/ages/size  

groups, and may  lack  age information. Concerns also exist about  the stress effects on  growth  

rates due to tagging, making them not representative of the actual population (Smircich and 

Kelly, 2014; Vollset et al., 2020). Typically, estimating the  growth process and length-at-age  

requires some method or  other data to derive the fish's age (e.g., Eveson et al., 2004).  
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163 4.  Why is estimating the growth process so complicated?  

164 With the range of data available and potentially  no imperative to understand the  

mechanistic drivers,  why does it remain so difficult to get a complete and reasonably accurate 

representation of a population’s length-at-age? Many  factors contribute to the complexity of  

estimating this process, including  the biological variability in the  growth pattern itself and a  

multitude of sampling biases in the data. What follows is only  a partial list of some of the key  

types of biological variability  and sampling biases.  

4.1. Biological variability/system processes  

Biological variability is the natural variation in length-at-age  and should ideally be  

included in the assessment model as a system model process along  with its associated variability  

(Maunder  and Piner, 2015). When estimating length-at-age for  an assessment, ideally, many  

sources of variability should be considered separately. However, in practice, these multiple  

sources of variability  are  often not specifically  addressed with separate  components of the  

system model process but are subsumed into other types of variability, model processes, or  

observation error (Maunder and Piner, 2017; Piner et al., 2018).  

4.1.1. Individual variability   

The most basic source of biological variability is the individual variability in the lengths  

for a  given age, but it is not always fully  considered. When it is estimated, there is no real  

consensus on how it should be modeled, such as whether it should be  modeled as a constant  

(standard deviation) or proportional (coefficient of variation) across ages  (or length) or how it  

changes with age (constant, linear, or a functional  form) or the shape of the  distribution of  
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184 lengths for a  given age (normal, lognormal). Simulation studies indicate that even when 

individual variability is estimated, the variability  may be underestimated (Schemmel et al., 2022)  

and almost always oversimplified.  

Furthermore, the observed individual variability is not the same as that expressed in the 

system processes of the assessment model.  In most  integrated  assessments,  synthetic length  

distributions are created  at discrete time step intervals (e.g.,  year, quarter) to compare to the 

observed length composition collected over that interval. Thus, the individual variability in the  

growth process of the model should include variability due to the continuous growth during the  

interval in addition to the natural variability. The shorter the model's time step interval and the  

slower the  growth of  fish, the smaller the contribution from growth over the interval will be to 

the individual variability  parameters.  Individual variability in spawning time and larval survival  

can also contribute to the variation (see 4.1.4 below).  

4.1.2. Sexual dimorphism  

Even under the same environmental conditions, fish of the same species often show some  

sexual dimorphism. The onset of sexual differences in length-at-age often  becomes apparent  

after maturation (Hüssy et al., 2012), with multiple hypotheses for this phenomenon (Slatkin, 

1984).  Assessment and growth models that are not sex-specific (one-sex models) often implicitly  

include (intended or not)  sex-specific differences in length-at-age as an additional contribution to 

individual variability.  

4.1.3. Temporal (annual/cohort)  variability  
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204 Surprisingly, few studies  aimed at length-at-age estimates for integrated  assessment  

consider that the length-at-age relationship can change across  years (although those for Cohort  

Analysis and Virtual Population Analysis applications often do). This temporal variability  

includes long-term trends or  interannual variability. When temporal variability is estimated, it is  

usually attributed to either annual changes in the  growth pattern or  cohort  growth differences  

(Thorson and Minte-Vera, 2016; Correa  et al., 2021). Annual changes may occur when  

environmental conditions within a  year cause  growth pattern aberrations to more than one age  

class in the population. Cohort growth differences  arise when cohorts display  a different  growth 

pattern that may also be  associated with environmental factors, which may  be spatially  

dependent or density-dependent. For instance, Denechaud et al. (2020) demonstrated density-

dependent cohort-specific growth patterns  for Atlantic cod. However, potential changes to the  

individual variability, rather than or in addition to changes in mean length-at-age, have received  

relatively less attention.  

4.1.4. Timing of spawning/hatching  

The spawning seasons are not fixed points in time and exhibit variability in both the  

timing of peak spawning a nd the duration of spawning. When a fixed birthdate assumption is  

made in the assessment or growth model in conjunction with variability in peak spawning, it may  

appear  as temporal differences in the length-at-age of  young fish even when the growth pattern is  

unchanged. Durham and Wilde (2005) demonstrated this phenomenon, although the persistence  

of such apparent differences in length-at-age across the lifespan of the  cohorts is uncertain. 

Variability in the duration of spawning likely impacts the spread of lengths for  young fish. 

Because spawning timing and duration variability primarily  affect  young fish, these sources of  

variability may be subsumed in the individual variability parameter(s) of  young ages. However, 
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227 it is not clear whether  expanding the individual variability will lead to accurate estimates of  

young fish length-at-age  when hatch dates vary, and the growth process is assumed to be time-

invariant. 

4.1.5. Seasonal variability   

Fish do not grow at the same rate throughout the  year due to changes in nutrient  

availability, temperature, and other factors affecting metabolism (Pauly, 1990; Bacon et al., 

2005). Length-at-age estimation models that account for seasonal  effects have been available for  

decades (Pitcher and Macdonald, 1973). However, routine stock assessment rarely incorporates 

these seasonal  growth effects.   

 4.1.6. Spatial variability  

Spatial differences in length-at-age  can arise due to regional variations in growth 

patterns. Campana  et al. (1995) demonstrated that  Atlantic Cod (Gadus morhua) could exhibit up 

to a 3-fold difference in lengths-at-age across the  stock distribution. Regional growth rates  are  

likely related to either nutrient availability or  factors affecting metabolism within specific  

geographical areas.  In the case of Atlantic cod, the authors surmised that local temperatures  

likely contributed to the difference. However, it is unclear if these differences in growth rates  are 

maintained if fish move from one region to another. Despite this potential source of variation, 

these spatial patterns in length-at-age are not routinely included in stock assessment models  

(including spatially explicit assessments).  Instead, spatial variability may be implicitly  

approximated using estimates of other biological  process variability, model processes, or  

observation error (e.g., McGarvey et al., 2007). Nevertheless, even knowing the contribution of  

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

11 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

248 genetic and environmentally driven components still may not produce  accurate estimates of  

length-at-age for  all regions.  

 4.1.7. Fishing-induced variability  

The consequences of  fishing have been shown to alter length-at-age at different spatial 

and temporal scales (Kristiansen  and Svåsand, 1998; Hilborn and Minte-Vera, 2008; Andersen 

and Brander, 2009; Eikeset et al., 2016). Over shorter periods, high fishing m ortality in 

conjunction with size-selective gears can lead to temporal changes in cohort mean length-at-age  

and its associated variability  (Lee, 1912). The typical assessment with a time-invariant growth 

process does not account  for this effect, as expected lengths in a time  interval are a function of  

the growth process and its individual variability  (typically  assumed to be normally distributed), 

without keeping track of  cumulative removals of  faster-growing f ish. Thus, the effect of size-

selective removals on the population size structure is lost between time intervals in the model.  

Beyond short-term effects, decadal  fishing pressures have been theorized to permanently alter  

life history characteristics such as maturation and growth processes (Audzijonyte  et al., 2013). 

However, the common assertion that fishing will inevitably  cause  a slowing of  growth due to the  

removal of faster-growing individuals has been challenged (Enberg et al., 2012). These decadal  

effects are likely to show up as temporal variability  or trends in the growth process.  

 4.1.8. Shrinkage  

The general model of fish growth assumes  growth over any unit of time. However, 

limited studies have documented that vertebrates can shrink in length under harsh environments. 

The mechanisms for such a survival strategy  are  not clear, but observational studies in fish 

(Huusko et al., 2011), amphibians (Bendik and Gluesenkamp, 2013), and laboratory studies of  
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290

crustaceans (Marinovic and Mangel, 1999) have documented length shrinkage. Despite its  

assumed rarity, in practical work, observations of  fish shrinkage have likely  been attributed to 

some form of observation error (e.g., data entry error) or rigor mortis.  

4.2. Sampling Biases/observational  processes  

Estimates of population lengths-at-age, along with their associated variability, are further  

complicated by various sampling biases. Within the assessment model, sampling bias is  

approximated by estimating observation processes (e.g., selectivity), accounting for bias in the  

observation error (e.g., the effective sample sizes used in the likelihood for length composition 

data), or  absorbed by other model processes (e.g., natural mortality; Maunder and Piner, 2017). 

Sampling biases can affect the representativeness of estimated growth rates, observed lengths, 

observed ages, or a  combination of all these factors.     

  4.2.1. Gear   

The effects of  fishery  gear selectivity  (Maunder et  al., 2014; Sampson, 2014) are perhaps  

the best study of  observational  biases. Fishing ge ar does not operate  randomly with respect to the  

size/age of the fish captured. Selectivity bias in the growth parameter  estimates has been well-

studied, and several estimation methods are available to deal with this issue (Frater  and  

Stefansson, 2020). However, the effects of fishermen-directed choices on  the size/age of fish  

captured in fishing operations are much less studied. Purse seine fishermen have been shown to 

avoid capturing unwanted species or sizes of targeted species  (Marçalo et  al., 2019). These  

decisions can be based on regulations, market forces, or fishermen's preferences and  can be 

adjusted within short time frames. In most assessments, these non-gear selection decisions are 

likely subsumed in the  gear selectivity estimates. The extent to which this approach will account  
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292 for such effects is not well-studied.  It has  generally  been regarded that  gear effects are more 

consequential for length-at-age  estimation methods assuming lengths are random-at-age,  as pre-

selection of age seems less likely than selection based on length.  

 4.2.2. Discarding  

Discarding (Rochet and Trenkel, 2005) is a post-operational decision that can affect the 

sizes of fish ultimately sampled from commercial fisheries (Catchpole et al., 2014). Both market 

forces  and regulation often contribute to size-selective discarding (Aarts and Poos, 2009), which 

can influence the length-at-age similarly to  gear selectivity. Some popular  assessment models  

enable the  estimation of retention curves to approximate the discarding process. However, this  

estimation requires observations of discarded fish or the imposition of strong assumptions about  

the discard process itself.                      

4.2.3. Spatial patterns in size/age  

Spatial patterns in observed length-at-age can arise even when the population exhibits a  

single common growth pattern across regions, but each region contains different segments of the  

population's length or age structure. These spatial  patterns can be attributed to fish behaviors  

(McDaniel  et al., 2016) or exploitation patterns (Frank et al., 2018). High and low regional levels  

of exploitation with size-selective gear can result in different observed lengths-at-age by  area.  

Patterns in larval settling  influence the observed  regional length-at-age. Perhaps the most  

common cause of these observational spatial patterns is fish movements. Size-based movements  

(Nøttestad et al., 1999)  are thought to arise from the differential swimming s peeds associated 

with size, thus influencing observed lengths-at-age across  migratory  space. Age-based seasonal  

migrations were documented by McDaniel et  al. (2016) in Pacific sardine (Sardinop sagax),  
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314 influencing regional ages-at-length. Similar to migration, age-specific habitat selection, possibly  

due to maturation, can make some segments of the age structure less available to fishing  gear  

(Tao et al., 2021). Spatially explicit assessment models with an estimation of movement or  

potentially estimating the appropriate  form of availability in  a fleets-as-areas model have been  

shown to approximate these observational spatial  effects (Lee et al., 2017).   

4.2.4. Sampling   

Size-selective onboard or dockside sample collection can affect the observed length-at-

age similar to size-selective gears.  In some instances, researchers try to address the lack of data 

on certain poorly observed size classes (often the largest sizes) by adding additional samples to 

understand length-at-age  better (Xu et al., 2016). In other instances, sampling strategies are used 

to improve estimates of length-at-age for stratified estimation methods. Random sampling, fixed  

sampling, and proportional sampling strategies have been studied via simulations, with methods  

fairing differently depending on factors such as fishery selectivity, sample  size, and life  history  

characteristics (Goodyear, 2019; Schemmel et al., 2022). Several  growth estimation methods  

(Goodyear, 2019; Lusk et al., 2021) have been developed specifically for these stratified designs  

(Kimura, 1977). Although sampling methods can affect all length-at-age estimation methods,  

random-at-age methods are the most likely impacted as age selection strategies are less often  

used  (Piner et al., 2016;  Lee et al., 2017).  

4.2.5. Measurement error   

Measurement  errors can  occur in both age estimates and length measurements. Aging  

error is  generally regarded as the larger of the two  sources of  errors. Not all structures used to  

age fish are confirmed to produce annual rings, and the interpretability of  these structures can be 
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336 quite variable (Cailliet et  al., 2001; Campana, 2001). For  example, age determination becomes  

difficult when annual marks are  reabsorbed in fin spines (Rodríguez-Marín et al., 2012). Multiple  

methods have been developed to quantify  the reliability/interpretability  (aging error) for stock  

assessment purposes (Richards et al., 1992; Punt et al., 2008). However, in most applied 

situations, this interpretability is not the true  error; instead, it is usually some measure of reader-

to-reader variability. Even when that measure of interpretability is measured against the true age, 

correcting observed ages  requires an estimation of the population age structure or an assumption 

that the observed ages are a random sample of the population.   

Although  generally thought less critical, error also exists in  the length measurement 

(Page et al., 2004). In some examples, this error increases with fish size and may be related to 

human tendencies to prefer recording digits ending in 0 or 5 (Bunch et al.,  2013). The issue of  

measurement  error  will be compounded when measurements are taken on difficult-to-measure 

fish (e.g., live releases for tagging, large sharks released alive) or when measurements are taken  

under challenging c onditions (e.g., rough seas  or using flexible tape measures).  In cases where 

lengths are a  conversion from one metric to another, such as  fork length to total length (Hansen 

et al., 2020), the conversion itself can introduce  additional variability and bias. Even when fish 

length is measured accurately, post-mortem shrinkage has been shown to occur in relatively short  

periods (Morison et al., 2003; Morison, 2004). Measurement and aging errors likely impact  all  

length-at-age estimation methods.  

Estimation of the growth process may include  fitting data that requires conversion from  

one type of size measurement to another (e.g., length from weight). This conversion adds an 

additional source of variability  and modeling c omplexity. The variability in the weight-length  

relationship, which includes similar components as those described for length-at-age,  also needs  
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359 to be incorporated into all  the model components. Some models also fit weight frequency data, 

often in conjunction with length composition data, but the variation in the weight-length  

relationship is often overlooked, causing a biased estimation of the variation in the length-at-age. 

Conversion from processed weight to whole weight, a common practice for some species, adds  

additional variation to the estimation process.     

4.2.6. Learned behaviors/avoidance  

A nearly completely overlooked bias in some length-at-age estimation methods  (and 

stock assessments in general) is a behavioral adaptation to fishing. Behavior has been described  

as a combination of innate (hard-wired) and learned responses to environmental stimuli (Kieffer  

and Colgan, 1992). Experimental evidence suggests that fish behaviors can be modified by  

repeated exposure to environmental stimuli. Yue et al. (2004) demonstrated that fish learn from  

impacts with fishing g ears, and long-term memory of that event leads to avoidance behaviors. 

Similarly, largemouth bass (Micropeterus salmoides) have demonstrated lure avoidance through 

experience-based learning rather than from conspecifics mimicking ( Louison et al., 2019).  

Learned behaviors  are likely  an age-based process  because the number of  experiences leading to  

learning will likely increase with age.  Other age-based patterns, such as age-related habitat  

choices (Tao et al., 2021) or movements (McDaniel et al., 2016), may be learned rather than 

innate behaviors. If the learned responses (e.g., avoidance) lead to a lower  probability of  capture, 

then assumptions about the representativeness of random-at-length data are in question.  
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378 5.  How influential is growth on assessment results?  

379 Before moving to estimating the  growth process, it may be helpful to investigate its  

influence on assessment models (e.g., Wang e t al., 2015; Stawitz et al., 2019; Correa et al., 2021) 

to help assess what might be a ‘reasonably  accurate’ representation. In integrated population 

dynamics modeling, the  growth process is linked to all other processes and data. However, to 

characterize its influence on assessment results, we are simplifying this complexity into the  

specific subunits of the  model that are likely the  most directly influenced  by length-at-age 

estimates. Length-at-age  most directly influences the assessment model through 1)  converting  

weight into numbers  and vice versa, 2) its contribution to the production function, and 3)  

modifying fits of size composition data. Relatively  simple sensitivity diagnostics can help  gauge  

the magnitude of assessment errors  resulting  from  each  growth process misspecification (see an   

example of each misspecification applied  in  Appendix A).  

5.1. Converting weight into numbers and vice  versa 

Most integrated stock assessment models are formulated in terms of numbers of fish at 

each modeled age, but the catch is often recorded in weight. The total  catch in weight needs to be  

converted into numbers-at-age in the age-structured models. The conversion is done through a  

series of population dynamic equations, including t he selectivity  curve, the  growth curve  (length-

at-age  relationship), the length-weight relationship, and the observed catch composition 

(assuming here it is size composition).  If the  growth process is misspecified, the incorrect  

numbers of fish are removed from the population, which will bias estimates of derived quantities. 

Indices of abundance are  also often recorded in biomass and have to be scaled to the numbers in 

the stock assessment model. Similarly, the management quantities are often specified as biomass  

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

18 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400

405

410

415

420

and will be biased because the numbers-at-age often have to be converted back into some form  

of a population biomass measure (e.g., spawning bi omass, maximum sustainable  yield). We 

generally believe that for size classes when fish are growing, there is usually  adequate 

information about length-at-age. H owever, it may  be common that the length-at-age of the old 

fish is misspecified  due to the low number of specimens and the difficulty in distinguishing  

growth zones in the otoliths of older fish. Because  old fish often make up a  small proportion of  

the catch and the biomass, the misspecification of growth in terms of converting numbers into 

weight  and vice versa may  be a relatively minor impact compared to the way the growth process  

interacts with other model sub-units. One exception is that, in an unexploited population, old 

individuals make up a larger proportion of the population. Therefore, estimates of depletion may  

be more impacted by bias in the length estimates for old individuals.     

5.2. Production function, estimation of absolute abundance, and management quantities  

The growth process also informs  yield-per-recruit, which is a tradeoff between growth 

and natural mortality and, in conjunction with the stock-recruitment relationship, controls the  

shape of the production function. The absolute abundance, depletion, and productivity determine  

how the catch impacts the population and therefore determine how the model fits to the indices  

of relative  abundance (Figure 1). Misspecified growth will result in biased estimates of absolute  

abundance or depletion level. The absolute  abundance  and productivity  also determine the  

maximum sustainable  yield and related management quantities. Therefore,  a misspecified  growth  

process will also bias estimates of MSY-based management quantities. A key question to assess  

is how much misspecification of the growth process affects  absolute abundance estimates.   

5.3. Fits to length composition and estimation of absolute abundance  
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422 Misspecification of the  growth process may most influence the  fit to length-composition 

data and its effect on estimates of abundance. The decline in the proportion of numbers-at-age in  

the population resulting from a combination of natural and fishing mortality is mediated through 

the selectivity to produce the catch-at-age (Figure  2). The smaller the proportion of old fish 

observed in the catch, given the selectivity curve  and natural mortality, the higher the estimated 

exploitation rate.  In models fit to length composition data, the catch-at-age  is translated into  

catch-at-length through the estimated lengths-at-ages. So, the fewer large fish in the catch, the  

higher the exploitation rate. Estimates of exploitation rate and catch correlate to population 

abundance. Because the catch is usually assumed to be known with little or no error, if the  

growth curve is misspecified, the estimates of population abundance  will also be biased. The  

effects of misspecification of the growth process are not confined to large fish, as fits to 

intermediate  lengths will also influence  estimates of abundance. The  role of intermediate sizes is  

more difficult to conceptualize and may be less influential. However, these considerations should 

be evaluated for  each specific situation.       

5.4. Length-structured models  

Prior  discussions have focused on the influence of the growth process on age-structured 

models, with emphasis on those that fit length composition data. Although beyond the scope of  

this work, length-structured models are also used for stock assessment (Punt et al., 2013). Those  

models are particularly used in situations where aging is impossible or when the fishing mortality  

significantly changes the length-at-age distribution (i.e., it is not normally distributed due to high 

fishing mortality  and/or  minimum legal size).  In length-structured models, misspecification of  

the growth curve (e.g., the length transition matrix) can also influence the productivity of the  

stock and the fits to the indices of relative abundance and length composition data. Age  and 
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length-structured models  or hybrids (McGarvey  et al., 2007; Methot and Wetzel, 2013; Punt et  

al., 2013) are impacted similarly.    446 

447 6.  Methods of estimation  

448  Several decisions need to be made about the methods used to estimate the growth 

process and those decisions will be influenced by the available data, the complexity of biologica

variation and sampling biases, and consideration as to what is a reasonably  accurate 

representation. The two basic decisions about methods are the functional forms of the  growth 

process and its variability  (structural choice)  and the statistical methods (procedural choice) use

to estimate it (Francis, 2016).               

6.1. Structural decisions  

  One would think that the choice of the  functional form of the  growth process would be  

the simplest and most biologically based decision in applied work. In contrast, the types of  

biological variability to be estimated may be  a somewhat more complex choice.   Despite 

theoretical work suggesting that the VBGF may not always be the most appropriate functional 

form (Day  and Taylor, 1997), a recent review of  published growth studies (196) found that the  

VBGF is by  far the most commonly used growth model (Flinn and Midway, 2021). Other  

popular functional forms included the  three-parameter Gompertz model and the three-parameter

logistic model. Newer  growth models that explicitly consider the cost of reproduction have also 

been proposed (Minte-Vera et  al., 2016). Undoubtedly, even more  forms  will be proposed and 

available for consideration. Several authors have made a case for some form of model averaging

or multi-model inference (Katsanevakis, 2006) because the preferred functional form by model  
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466 selection criteria (e.g., AIC) may not always provide the most accurate predictions of length-at-

age (Thorson and Simpfendorfer, 2009). However, Vincenzi et al. (2020) argued that with good 

data, the predicted length-at-age might not be functionally different when estimated using 

different  approaches. It is also not clear how model averaged length-at-age estimates could be 

used in some popular stock assessment model packages. Examination of data, data fit and 

realism of results across  spatial and temporal scales are important and should guide these  

structural choices.  

The dominance of the VBGF for  applied work is  in part rooted in both tradition and the  

current limitations in choices of functional  forms supported by widely used assessment packages. 

Issues related to  assessment model support will likely diminish with the development of the next  

generation of  assessment models (Punt et al., 2020), with more open code  facilitating inclusion 

and experimentation with alternative functional forms. Perhaps the larger issue in applied 

assessment is the general practice of ignoring biological variability in the length-at-age 

(Lorenzen, 2016). This reluctance may be due to data limitations or estimation complexity as  

much as the availability  of these features in assessment packages.  Assessments often ignore  

variability in all life history traits and implicitly account for the error in other components of the  

model. This practice  causes either additional observational error, process variability in 

recruitment, or selectivity.  It is often unclear how this practice has influenced assessment results  

(Maunder  and Piner, 2017). 

6.2. Procedural decisions  

After deciding on the functional form of the  growth process and what variability to 

include, the next decision is what method will be used to estimate it. This research  area has seen  
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488 the development of a host of new statistical methods to estimate length-at-age. The different  

procedures are usually developed in response to specific sampling biases, improved statistical  

methods, or to make use  of alternate forms of data. We divide the methods into external  

estimation (the estimation is done external to the assessment model and results brought into the  

model) and internal estimation (the estimation is done as part of the assessment model itself).  

6.2.1. External estimates   

Most length-at-age estimates are derived  from standalone methods. These approaches  

often are designed to account for at least one of the observational biases, forms of system  

variability, or types of data that can be used. They  generally solve their specific issues by making  

a set of assumptions; thus, each approach may be  good for one situation and inappropriate for  

another. Knowledge of the potential data biases is  needed to evaluate which approach, given its  

assumption, may be most appropriate. The studies  available are too many to summarize here.  

However, we  give  a few  examples of approaches  designed to solve some of the complex issues  

described in Section 4 or  use data described in Section 3. 

6.2.1.1. Length-only methods  

There are many methods for estimating length-at-age using length-frequency data 

(Schnute and Fournier, 1980; Mildenberger et  al., 2017), with the Multifan program (Fournier, 

1990; Fournier  et al., 1998) perhaps being the best known of the statistically  rigorous  

approaches. The use of lengths only has not been without criticism (Wang, 1994), as the  

reliability of asserting an  age with length-only data becomes more difficult as the growth slows  

and the modal structure becomes less apparent. Even younger ages can be difficult to determine  

as spawning seasons become more diffuse  (Batts et al., 2019). As with all  methods, careful  
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consideration of the  assumptions of that method should be made. For example, Wang and 

Somers (1996) described an alternative method to estimate growth using length frequency for  a  

short-lived prawn dealing with protracted spawning. However, the method overcomes the bias  

due to protracted spawning by assuming a known maximum  size at recruitment.  

6.2.1.2. Methods that deal with selectivity bias  

Because bias  caused by size selection in fisheries  has been known for more than 100 

years, methods that attempt to account for length-based selection are perhaps the most common.  

A seldom used but innovative approach described by Taylor et al. (2005) accounted for size-

selective  gears. Their method, however, must assume strong information on the fishing history  

and selectivity shape. The use of random-at-length data has also been shown to account for size  

selectivity but at the  cost of approximately knowing the  age structure of the  sampled population 

(Piner et al., 2016).  

6.2.1.3. Methods that use length-stratified samples  

The advantage of stratifying samples used to estimate length-at-age is ensuring g ood 

coverage of  all sizes of fish. Several methods have been developed using these length-stratified  

samples (Perreault et al., 2020). However, the same issues related to assumptions about gear  

selection and spatial availability  will apply.  

6.2.1.4. Methods incorporate aging error   

Cope and Punt (2007) demonstrated a method incorporating aging error that assumes  

knowledge of the population’s age structure and reader-to-reader  ageing precision using random  

effects methods to estimate length-at-age. As with methods that use knowledge of the age-
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531 structure of the population, any  age-based biases that affect the representativeness of the age 

structure may bias  estimates. As the approach assumes random-at-age, length-based sampling  

issues will also affect the estimates.  

6.2.1.5. Meta-analysis   

Meta-analytical methods have been used in fisheries to estimate various life history  

characteristics (Thorson et al., 2014). They have been used specifically to estimate individual  

growth variability  (Pilling et  al., 2002), variability in growth between populations of a species  

(Helser  and Lai, 2004), and estimate growth across closely  related taxa (Helser et al., 2007). For  

applied work, the advantage of these methods is to improve parameter estimation for units with 

weaker data by borrowing information from the more data-rich populations. The estimation 

procedure used to estimate the length-at-age relationship will be subject to the same biases  

associated with that method, and improvements due to borrowing information will be only as  

good as the representativeness of those populations  for the unit of interest.  

6.2.1.6. Methods incorporating covariates  

Estimating the length-at-age relationship has included other explanatory variables such as  

water depth, spatial location, and cohorts (Helser  et al., 2007; Kimura, 2008). The evaluation of 

covariates is often for larger ecological questions; however, it could be helpful for applied 

assessment where observations are sparse.  In those cases, the covariate may  help inform the 

estimate. However, in those situations where there is enough information to explore covariates, 

there was likely  enough information to estimate length-at-age  without the covariate. Perhaps, 

covariates may be most useful in forecasting f uture changes in growth in response to 

hypothesized changes in the environment.  
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553 6.2.1.7. Methods that combine multiple data types  

We normally think of integrating multiple data types as the exclusive purview of the  

integrated population dynamics model, but several approaches have been developed to use  

multiple data types to estimate growth. Several papers have been developed that integrate the 

direct observation of  growth from tagging a nd direct observations of length-at-age from paired 

age-length data (Eveson et al., 2004;  Aires-da-Silva et al., 2015; Scherrer  et al., 2021). Much like  

other growth estimation methods, specific sampling biases  and biological  sources of variability  

may still need to be  addressed and may differ  among the different data sets used in the analysis. 

 6.2.1.8. Back calculation methods  

When paired age and length samples are particularly sparse, back-calculated lengths-at-

age are sometimes used to estimate the growth process. Back-calculation typically involves  

establishing a relationship between fish size and otolith size and subsequently using that  

relationship to predict a  younger fish size than observed. Often done to fill in missing ages, it has  

also been used to create repeated measures on the same fish. Jones (2000) developed methods  

accounting for the lack of independence of the repeated measures, and  Francis (1990) created  a 

review of  available estimation methods and caveats.  

6.2.1.9. Random-at-length methods  

Although treating the paired age  and length data  as random-at-length is less commonly  

used, random-at-length estimation procedures are  not affected by length sampling biases. Some  

evidence suggests that estimates of individual variability are improved when paired age-length  

data is treated as random  at length (Piner et al., 2016). Lee  et al. (2019) showed that age  
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574 sampling biases that are  not properly accounted for will cause biased growth estimates. As  

lengths are conditioned on the ages of the population, this approach needs an estimate of the age  

structure of the population. Although approximate methods were developed (Piner et al., 2016), 

this approach depends on a good approximation of the population age structure and has  generally  

been constrained to use  within the population dynamics model (see Section 6.2.2).  

6.2.1.10. Empirical transition matrices/age-length keys  

Although these  approaches are not used to estimate the  growth process, they  are observed 

measures of the age distribution for a length or the  length distribution for an age (less often). In 

applied work, these  approaches are most commonly used for converting length composition into 

age composition, which is then used in the assessment model. Empirical approaches do not need 

to assume some functional relationship between length and age  and are unaffected by selectivity  

issues in the conversion when only used to represent the fishery/survey unit. Ailloud and Hoenig  

(2019) provide  a  good overview of both forward (estimate ages for a length) and inverse  

(estimate lengths for an age) keys, as  well as a method to combine both. Much like with growth 

estimation methods, this  approach has a larger literature background that we can present here: an  

example is Babyn et al. (2021), who provided methods for estimating spatial keys. In this paper, 

we lump this method with empirical weight at age (discussed below 6.2.2.2) as empirical  

approaches.   

6.2.2. As part of the dynamic model  

6.2.2.1. Internal  
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594 The growth process is increasingly estimated  as part of the integrated population dynamic  

model (Zhu et al., 2016). In theory, estimation inside the assessment model  offers many  clear  

advantages over external  methods. Integrated population dynamics models can incorporate many  

(if not all) data types  and potentially draw information from indirect sources, such as the linkage  

between catch and indices via the production function (Sippel et al., 2017). Additionally, 

incorporating the  growth process estimation as part of the assessment model may provide  a better  

estimate of the total assessment uncertainty. The most often cited advantage  of estimating length-

at-age in these models is that they  can estimate the relevant systems and observational processes  

needed to match both random-at-age  and random-at-length assumptions. Spatial availability and  

age-based effects can be separated from length-based gear  and sampling selection (Lee et al.,  

2017; Piner et al., 2018). Aging  error and random-at-length data are  most adeptly handled inside  

the population model as an estimate of the population age structure  can be  combined with 

measures of  aging precision. In a separate  application, Stewart and Piner (2007) used known age  

samples as data to estimate aging bias.  Integrated  assessment models can also incorporate (or  

estimate) much of the biological variability, such  as individual, sexual dimorphism, and temporal 

variability. However, spatial patterns in the growth process and movement of fish with those  

patterns from one  area to another are still somewhat of an unknown problem.  

Despite the obvious advantages of estimating length-at-age as part of the assessment  

model, many  applied assessments still specify this process based on external estimates. Although  

the external estimates of  length-at-age must rely on assumptions that may  be estimable in the  

assessment model, estimating the  growth processes as part of the assessment is far from 

straightforward. The correct observation and system processes need to be estimated. Piner et al. 

(2018) demonstrated that estimating only length-based selection patterns in a fleets-as-areas  
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617 model, when gear selection is length-based and availability is  age-based, will result in biased 

estimates of mean length-at-age.  In this case the model may incorrectly  approximate the age-

based availability effect  as length-based selection. Care should also be taken when adding  

additional data sets to the integrated model with the only purpose of better informing gr owth. 

These additional data sets require that different model processes  (both observation and systems) 

be estimated linking that data to the dynamics, or  bias can be introduced to the dynamics  

themselves. Lee  et al. (2019) demonstrated that conditional age-at-length data (random-at-length)  

also have direct information on the age structure of the population. If the appropriate age-based  

observation or systems processes  are not estimated (including potentially temporal variability in 

the growth process), that  data provides bias not only on the  growth process  but the population 

age structure itself. Additionally, in assessments that estimate the  growth process, it is common  

to assume at least one fleet is represented by an  asymptotic selectivity to inform the model that 

the very largest fish are observed. However, the validity of this assumption may be questionable 

(Sampson, 2014), and erroneously invoking it may lead to biased results. In information-limited  

systems, estimating the growth process may lead to convergence issues  and will likely increase 

run times substantially when fitting length composition data. These issues  will be even more 

pronounced when several forms of biological variability in the  growth process are also estimated. 

There is some hope that incorporating random effects into next generation assessment models  

will aid in the estimation  of these time-varying processes.  

6.2.2.2. Bypassing the growth process   

 A number of integrated assessments bypass the  growth process for some or all sub-

components of the assessment model. In some sense, this could be seen as  abandoning the  

conceptual approach  of integrated modeling;  however, depending on the circumstance it may  
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provide more reliable assessment results. As already mentioned, empirical age-length keys 

bypass the growth process in converting observed lengths to ages. The advantage of this 

empirical approach is that multiple sources of process variability that may be difficult to estimate 

may be adequately addressed with appropriate samples. Empirical weight-at-age approaches take 

this concept further by bypassing the length-at-age relationship entirely by inputting observed 

weights-at-age for each fleet as model structure. Empirical weight-at-age models are age-based 

(age composition data) and can be combined with the use of age-length keys if composition data 

are lengths. This approach to dealing with length-at-age has several advantages, especially for 

highly variable populations. Changes in lengths-at-age due to all relevant biological processes 

are embedded in the observed weights-at-age and thus do not need to be estimated. Using the 

empirical approach can also account for some aspects of spatial variation in length-at-age. 

Because the weight-at-age represents each fleet, size-based selectivity is already incorporated 

and doesn’t need to be estimated (although an age-based selection is needed to link to the 

underlying numbers-at-age). However, aging error may be problematic in developing the 

weights-at-age observations because population numbers-at-age are still needed to correctly 

interpret aging error. This may be a more significant problem for very young fish as the aging 

error will be unidirectional and compounded if age-related weight gains are rapid. For example, 

aging errors will lead to some age 1+ fish being misclassified as age 0, which may substantially 

bias the weight of age 0 fish. In addition, to calculate the total population weight-at-age, one fleet 

or survey is usually assumed to be representative of the population, and size-selectivity may lead 

to biased population biomass. Although this approach is intended to be observation-based, some 

level of imputation/estimation of missing weights-at-age may be necessary. This replacing of 

missing or unrealistic weights-at-ages might be considered a form of growth process estimation 
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663 and may be subject to a separate set of assumptions. As with length-at-age  estimation, these  

assumptions will be somewhat subjective; for example, within a cohort, fish may shrink from  

one  year to the next, and decisions about shrinking (Huusko et al., 2011; Bendik and 

Gluesenkamp, 2013) versus sampling issues may  have to be addressed. Finally, because much of  

the ‘estimation’ in empirical methods is done outside the assessment model, total assessment 

uncertainty will likely be reduced  relative to internal estimation.                                          

664 

665 

666 

667 

668 

669 7.  Good practices  

670 The previous sections have highlighted our understanding of length-at-age and the  

difficulties in estimating  and using this system model process. What follows is our general 

conclusions (in bullet points) regarding e stimating and using the  growth process in applied age-

structured integrated assessment models. We provide guidance by the same sections as  given  

above and include the underlying r ationale. We also provide an additional  section on expressing  

length-at-age uncertainty in the total assessment uncertainty.  

7.1. Data -  Good Practices  

•   Include all relevant data when the important sampling biases can be identified and adequately  

addressed.  

Rationale  

In principle, increasing the amount and types of data used should add information to the  

estimation of the growth process and its variability. Different data types have been shown to 

have better information on either mean length, growth or individual variability, and for different  

ages. When estimating length-at-age in the integrated assessment model, care should be taken to 
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705

684 include only data where important sampling biases are identified  and can  be adequately  

addressed. Within the integrated assessment model, unmodelled observational processes  will  

lead to biased estimates not only of the  growth process but also the population dynamics. In 

cases where a single time-invariant  growth curve is estimated in the assessment model, consider  

if adding multiple  years  of data such as random-at-length is needed as this  may  greatly increase 

the amount of observational and systems processes that need estimation.  

7.2. Biological  variability  - Good Practices  

•   Estimate all relevant biological variability  whenever possible, focusing on individual, sex-

specific and temporal variability.  

•   Be explicit about what forms of variability  will be subsumed into the individual variability  

parameters. If the individual variability is specified, care should be taken to match the  

specified variability with fish growth over the time step interval used in the assessment 

model.  

•   When fish growth is rapid and the  growth process is estimated inside the assessment model, 

consider modeling smaller timestep intervals in the assessment.  

•   Investigate possible spatial variability  and if regional growth patterns are found to be  

important to assessment results consider empirical  methods, separate assessments for each 

area or spatially explicit assessments with regional growth processes.  

Rationale  

Individual, sex-specific, temporal, and potentially  spatial variability are likely sources of  

biological variability for  many stocks. Individual, sex-specific, and temporal  variability offer no 

real impediments to estimation and should be investigated in most assessments. Estimating  
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706 individual and temporal variability inside the assessment model also offers  some advantages  with 

dealing  with other forms  of biological variability.  If individual variability is estimated inside the  

assessment model, it will likely account for variability from the duration of  spawning a nd growth 

within the time step interval of the assessment model. For fast growing fish, smaller model time  

step intervals can reduce  the potential errors  from  continuous growth over the interval. If  

temporal variability is  estimated, it will likely account for variability  from spawning timing and  

fishing induced variability. Spatial variability due  to regional growth  patterns may present the 

most problems for the assessment model as a common growth process with inflated individual  

variability may not provide good predictions of regional length composition.  In cases  with 

impactful levels of biological spatial variability, empirical approaches should be considered. If  

movement between  areas is low, separate assessments for each area or spatially explicit  

assessments with regional growth processes  could be considered.  

7.3. Sampling biases/observational processes  - Good Practices  

•   When estimating the  growth process internally,  estimate all the appropriate observational 

and/or system processes linking data to the  estimated dynamics. When using external  growth 

estimation methods, choose the methods that best deal with the important sampling biases.  

•   As the number of important sampling biases increase, estimate the  growth process as part of  

the integrated model.  

•   If sampling biases are difficult to address consider empirical approaches.  

Rationale  

We consider the major sources of  sampling bias common to most assessments are  gear  

selectivity, length stratified sampling, spatial patterns, and measurement error. More than one  
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728 form of sampling bias can exist for any particular  data set and may  change over time.  

Observational processes  may need to be  estimated in age, length, or both to deal with the  

sampling bias. Because aging error requires some  measure of population age structure, it will be  

most easily handled as part of the assessment model. As more and different types of important 

sampling biases are identified, estimate the growth process as part of the integrated  assessment  

model or consider empirical approaches.  

7.4. Influence of growth on assessment  - Good Practices  

•   Investigate how length-at-age estimates will influence the assessment models results through 

sensitivity diagnostics. The greater the influence of misspecification on results, the more  

accurate the  estimates of  both the growth process  and its biological variability will be  

needed.  

•   The growth process is likely to be  influential when composition data are lengths and they  are  

used to provide information about abundance. In cases when growth is uncertain and there is  

other reliable information on absolute abundance, consideration should be  given to managing  

the influence  of length-composition data (e.g., data weighting or observational model  

processes estimated)  

•   In  cases  where misspecification of the growth process will affect assessment results but  

estimation of all relevant variability is not possible, consider empirical methods.  

Rationale  

The sensitivity of assessment results to  the misspecification of the  growth process  will 

influence what is considered reasonably accurate in the representation of the length-at-age and its  

associated variability.  A  determination of the minimum level of growth process complexity in  
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750

755

760

765

770

the stock does not set an upper bound to the level  of growth complexity incorporated into the  

assessment. The maximum level of complexity  will likely be influenced by data availability,  

knowledge of the system, and analyst time. There  may  also be a cost to the  estimation of less  

consequential processes  or variability  as it could lead to issues in the estimation of more  

consequential processes  and their variability (e.g., selectivity, M etc.).  

For cases where misspecification of the growth process will have limited influence on the 

estimated dynamics, a time-invariant estimate of  length-at-age may be the  minimum resolution  

required to  get a reliable  assessment result. These  situations will likely be  when the population 

scale is not derived from  fitting to length composition data. This could occur when a strong  

production function explains the depletion in an index of relative abundance caused by catch or  

when an absolute biomass survey is part of the  assessment. Reduced model  sensitivity to the  

growth process may be reinforced when catches come from  young fish, age composition data are  

available, or when catches are recorded in numbers rather than weights. Model diagnostics  and 

sensitivity type  analyses  will be helpful in the impact of the  growth process misspecification.  

For cases where  fitting length composition is used to estimate population abundance, a  

more accurate and, therefore more complex/complete treatment of the growth process may  be 

needed. This includes  accounting for all forms of  observational bias and estimating the relevant  

biological process variability. However, estimating all those observational and system processes  

may become  challenging. Alternatively, empirical methods may be used if  appropriate samples  

are present and with consideration of the issues mentioned.  

 7.5. Methods  

7.5.1. Structural Decisions  - Good Practices  
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772 •   Use the most appropriate functional form for the data with consideration of what the  

assessment package used will support.  

Rationale  

Structural decisions about the functional form of the growth process should be  

made based upon the best evidence but may  have  to conform to the forms available in the  

assessment models used. Care should be taken not  to use a highly constrained growth 

model that is not appropriate because the typically abundant data for  young fish can 

control the estimates of  mean length-at-age for old fish and the fit to length frequency  

data represented by old  fish (the large lengths) often influences the estimates of absolute 

abundance.  

7.5.2. Procedural Decisions  - Good Practices  

•   In situations where the  growth process will not be  influential on results an external 

estimate may be appropriate, but internal estimation should still be considered.  

•   In  complex situations with multiple sources of biological variability  and sampling  

biases, estimate the growth process as part of the integrated assessment model where 

possible.  

•   If the growth process is too complex to be estimated as part of the assessment model, 

consider empirical methods.  

•   If  growth varies by area and movement among areas is low, consider  assessing each  

area separately using the regional  growth process  or use empirical methods.   

Rationale  
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793 Although external methods of estimating length-at-age can be used to handle  

multiple forms of biological variability, internal estimation may be more  appropriate for  

situations where accurate estimates of length-at-age and its variation is needed. Internal  

estimation will better account for multiple sources of sampling bias and add to the  

assessment estimate of uncertainty. Estimating temporal variability  and individual 

variability will likely  account for other sources like spawning timing and growth during  

the time step interval of the model.  When external estimates are deemed sufficient, use 

the most appropriate method that deals best with the sampling bias identified. Consider  

empirical estimates when biological variability is important but too complex to  

adequately  estimate inside the assessment model. Modeling of spatial difference in 

growth is complicated in  age-structured population dynamics models  and when 

movement rates are low it may be adequate to assess each region separately.  

7.6. Incorporating uncertainty in the growth process into characterizing assessment uncertainty  

- Good Practices  

•   Estimate the growth process as part of the dynamic model.  

•   All key sources of biological variability should be  appropriately  accounted for and estimated.  

•   Consider a more flexible growth form to represent  the uncertainty in the  growth form beyond 

the VBGF.  

•   When the estimates of length-at-age influence model results and the  growth process is  

estimated externally, consider an ensemble modeling approach or a joint prior on the  growth 

parameters to incorporate growth process uncertainty.  
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814 •   Further  research is needed to understand the appropriate approaches to represent uncertainty  

when using e mpirical methods.  

Rationale  

Estimating key biological processes as part of the  assessment model will likely provide a  

more complete estimate  of the total uncertainty. This includes all the relevant sources of  

biological variability. Despite the popularity of the VB  growth function, it often is relatively  

limited in dealing with growth patterns of very y oung fish, and given the  general  abundance of  

young fish samples  can result  in biased estimates of mean length-at-age  for old fish. Developers  

of the next generation of  assessment models should make it a priority to provide more flexible  

options. As empirical approaches become more popular with integrated assessment modelers, 

some thoughts should be  given to how to incorporate uncertainty in the unmodeled growth 

processes into the total assessment uncertainty. When growth misspecification is a key source of  

uncertainty in assessment results and not estimated as part of the assessment model, ensemble  

approaches or the use of  a joint prior on the growth parameters may be needed to incorporate this  

uncertainty into assessment results. The joint prior accounts for the common correlation between 

estimates of the asymptotic length  and the growth rate parameter.   
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830 8. Final Thoughts and Future Research  

831 The general recommendation of this work is to use either empirical  approaches or to 

estimate the growth process and all its biological variability as part of the  assessment model. The  

authors recognize that this is a ‘best case’ recommendation and many (if  not most) assessments 

will not have the complete age data for the empirical approach or the information load to 
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835 estimate the growth process and all its complexity. Estimation of the growth process will be even  

more problematic due to likely parameter  confounding if  good practices  recommend estimating  

other model processes (e.g., M, selectivity etc.) with both flexibility and including process  

variation.  

If information constrains growth process  estimation then perhaps the more important  

question for the typical assessment is what to do if reasonably  accurate estimates of the length-

at-age or complete age data are not available.  Because so many assessments rely on size 

composition data, more research needs to focus on how best to approach modeling length 

composition data. This is especially crucial when  size composition data are used to estimate  

abundance, as these models tend to be data rich and information poor. Even in information rich 

situations, more work needs to be done on the best approaches to deal with the seemingly  

inevitable misfit to length composition data arising from incomplete  growth modeling. The  

relative roles of data weighting/observation error,  estimation of alternative  observational 

processes or alternative modeling approaches (like empirical weight-at-age) should be  

investigated. This research needs to be done  with the understanding that variability in other  

system processes (e.g., natural mortality) and observation processes (e.g.,  selectivity) may be 

more important to estimate.   
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1290 

1291 Figure 1.  Illustration of the absolute abundance information contained the systems model process  

of the production function, catch, and index of relative abundance. The solid and dashed lines  

represent depletion in the presence and the  absence of biological  processes, respectively.  R  is 

recruitment,  G  is  growth, and M  is natural mortality.   
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1295 

1296 Figure 2. Illustration of the roles of both systems  model and observational  processes on the  

abundance of a  cohort and catch-at  -age. 1297 
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1298 Figure 4. Sensitivity diagnostic results from misspecifying the  growth process on converting numbers into weight in the Pacific 

Bluefin tuna stock assessment. Panel A is spawning biomass and B is fraction unfished (depletion level). The three lines in each plot  

are ASPM models specifying faster  growth  and smaller  Linf (red), original length-at-age  (black), and slower  growth and larger  Linf  

(blue). Unfished spawning biomass estimates for  model runs are given in panel A as triangle, circle and  cross, respectively. 
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1302 

1303 Figure 5. Sensitivity diagnostic results from misspecifying  the  growth process on the shape of  

the production function and calculation of biomass from model estimates of numbers-at-age.  

Panel A is spawning biomass, B is fraction unfished (depletion level), and C is the production 

curve. The three lines in  each plot are ASPM models specifying faster  growing and smaller  Linf  
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1307 (red), original length-at-age  (black), and slower  growth and larger  Linf (blue). Unfished 

spawning biomass  estimates for model runs are  given in panel A as triangle, circle  and cross, 

respectively.  
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1310 

1311 Figure 6. Sensitivity diagnostic results from misspecifying  the  growth process in the Pacific  Bluefin tuna stock assessment that fits to  

length compositions only. Panel A is spawning biomass and B is fraction unfished (depletion level). The three lines in each plot are 

the models specifying faster growth and smaller Linf (red), original length-at-age (black), and slower  growth and larger  Linf (blue). 

Unfished spawning biomass estimates for model runs are given in panel A  as triangle, circle and  cross, respectively.  
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